DEPARTMENT OF BIOTECHNOLOGY

AMENDMENTS MADE TO THE CURRICULUM AND SYLLABUS (2013) OF PROGRAM B.TECH BIOTECHNOLOGY BASED ON THE APPROVAL ACCORDED TO RESOLUTIONS IN THE 25TH ACADEMIC COUNCIL MEETING HELD ON 21.03.2014. THESE AMENDMENTS ARE EFFECTIVE FROM ACADEMIC YEAR 2014-15 ONWARDS.

The amendments include following:

1. Addition of course BT1072 CELL AND MOLECULAR NEUROSCIENCE under departmental elective

- 2. Revision of Syllabus for BT1016 ENZYME ENGINEERING AND TECHNOLOGY
- 3. Revision of Syllabus for BT1059 BIOREMEDIATION TECHNOLOGY
- 4. Revision of syllabus for BT1060 METAGENOMICS
- 5. Revision of syllabus for BT1029 PROTEIN ENGINEERING AND PROTEOMICS

Add the following course under Departmental electives

Course code	Category	Title of the course	L	Т	Р	С
BT1072	Р	CELL AND MOLECULAR NEUROSCIENCE	3	0	0	3

1. Syllabus of BT1072 CELL AND MOLECULAR NEUROSCIENCE

		L	Т	Р	С					
	CELL AND MOLECULAR NEUROSCIENCE	3	0	0	3					
BT1072	Total No. of Contact Hours - 45									
	Prerequisite									
	Nil									
PURPOSE										
To provide basic	understanding of the nervous system and its cellular and	molec	ular a	aspec	ts of					
functioning in he	althy and diseased condtions.									
INSTRUCTION	VAL OBJECTIVES									
1. To study t	ne anatomy and physiology of nervous system.									
2. Discuss th										
diseases, t	echnology, etc.									

UNIT I- OVERVIEW OF THE NERVOUS SYSTEM

(8 hours)

Cellular components of the Nervous system: Neuron, Glia-Neural circuits, Organization of the nervous system: Structural and functional aspects of the neural systems-Behavior

UNIT II- NEURAL SIGANLING AND NEUROCHEMICALS (8 hours) Electrical signals: Voltage-dependent membrane permeability-Ion channels and transporters-Synaptic transmission-Neurotransmitters and their receptors-Molecular signaling in neurons-Synaptic plasticity

UNIT III- SENSORY AND MOTOR SYSTEMS (12 hours) Somatic sensory system-Pain-Visual and Vestibular pathways-Motor neuron circuits-Motor neuron control by the CNS-Construction and modification of neural circuits-Repair and Regeneration in nervous system

UNIT IV- BRAIN FUNCTIONS

Cognition-Speech and Language-Sleep and Wakefulness-Emotions-Memory-Sex and Sexuality-Neuroanatomical basis for brain functions-Interactions between neuroendocrine system and immune system-its role in health and disease

UNIT V- NEURODEGENERATIVE DISEASES Diseases and injuries of the nervous system—Neuromuscular disorders-Basal ganglia disorders:

Parkinson's disease—Spinal cord injury—Traumatic brain injury—Stroke—Dementia

TEXT BOOK

1. Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, Leonard E. White, "Neuroscience," Sinauer Associates, Inc., 5th Edition, 2012.

REFERENCE

1. Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, "Principles of Neural Science," McGraw-Hill, 5th Edition, 2012.

	BT1072 CELL	AND	MOL	ECU	LAF	NEU	ROS	CIEN	CE			
	Course designed by			D	epai	rtment	of Bi	otechi	nology	y		
1	Student Outcomes	a	b	c	d	e	f	g	h	i	j	k
			Х									Х
2	Mapping of instructional objectives with student outcomes	1		2		3						
3	Category	Ge	eneral		Ba	sic	E	ngg.S	ci.&	Pr	ofessi	onal
		((G)	S	Sciences(B) Te			Tech. Arts (E)			Subjects (
											Х	
4	Broad Area (for courses	Bio	otechno	ology		Bio	proce	SS		Che	mical	
	under 'P' only)					Eng	ineeri	ng		Engir	neerin	g
		Х										
5	Approval		24^{th}	mee	ting o	of Aca	lemic	Coun	cil, Aj	pril 2	014	

(8 hours)

(9 hours)

2. Revised Syllabus for BT1016 ENZYME ENGINEERING AND TECHNOLOGY

	ENZY	ME ENGINEERING AND TECHNOLOGY	L	Т	Р	С					
рт	1016	Total No. of Contact Hours - 45	3	0	0	3					
DI	Prerequisi	te									
	Nil										
PURP	DSE										
The PU	RPOSE of this course	e is to provide an opportunity to understand the theo	reti	cal c	conc	epts					
of enzy	me technology princip	bles and applications.									
INSTR	UCTIONAL OBJEC	CTIVES									
1.	To understand the basics and mechanisms of enzyme catalysis										
2.	To impart knowledge on reaction kinetics of free and immobilized enzymes										
3.	To study about the sources, production and industrial applications of enzymes										

UNIT I - INTRODUCTION TO ENZYMES

Classification of enzymes- Characteristics of enzymes - Structural Components of Enzymes: Role of Coenzymes and Cofactors- specificity of enzyme action, Factors affecting enzyme activity: pH- temperature, Enzyme substrate complex formation models: lock and keyinduced fit- Various mechanisms of enzyme catalysis: acid base- covalent bonding- proximity

UNIT II – ENZYME KINETICS I

Kinetics of single substrate reactions: Michaelis-Menten Kinetics - Evaluation of Michaelis -Menten parameters- Line Weaver Burk plot- Eadie Hofstee plot - Hanes woolf plot - Eisenthal and Cornish Bowdon plot - turnover number, Kinetics of multi-substrate reactions: Ternarycomplex mechanisms- Ping-pong mechanisms.

UNIT-III ENZYME KINETICS II

Kinetics of Enzyme Inhibition: Reversible and irreversible enzyme inhibition - competitive, uncompetitive and non competitive enzyme inhibition - substrate and feedback inhibition, Allosteric enzymes: MCW model and KNF model, Methods of immobilization of enzymes, Kinetics of immobilized enzymes: Effects of external mass transfer and intra - particle diffusion, Enzyme Deactivation kinetics.

UNIT -IV PRODUCTION, PURIFICATION AND CHARACTERIZAION OF **ENZYMES** (9 Hours)

Enzyme sources: Extraction from plant, animal and microbial sources - Production and purification of intracellular and extracellular industrial enzymes - Comprehensive flow sheet for enzyme purification: Techniques for enzyme purification- Analysis of yield, purity and activity of enzymes -Determination of molecular weight of enzymes

UNIT -V INDUSTRIAL APPLICATIONS OF ENZYMES

Enzyme reactors- Application of enzymes in food industries: brewing, baking- Food processing: High fructose corn syrup production- Detergent industry- Textile industry - leather pulp and paper industry - Medical and diagnostic applications of enzymes: Biosensors.

REFERENCES

(**10 Hours**)

(8 Hours)

(10 Hours)

(9 Hours)

- 1. Trevor Palmer and <u>Philip L Bonner</u>. "Enzymes : Biochemistry, Biotechnology, Clinical Chemistry", East- West Press, 2004.
- 2. Shuler, M.L. and F. Kargi, "*Bioprocess Engineering : Basic Concepts*" 2nd Edn, Pearson, 2002.
- 3. Blanch, H.W and D.S. Clark. "Biochemical Engineering". Marcel & Dekker, Inc., 1997.
- 4. Bailey, J.E and D.F. Ollis, "Biochemical Engineering Fundamentals", 2nd Edition, McGraw-Hill, 1986.
- 5. Nicholas C. Price and Lewis Stevens, "*Fundamentals of Enzymology*", Oxford University Press, 1982.
- 6. Alan Wiseman, "Handbook of Enzyme Biotechnology", 3rd Ed, Ellis Harwood Publications, 1999.

	BT1016 ENZYN	AE EI	NGIN	EERI	NG A	ND T	ECHI	NOLO	OGY			
	Course designed by			D)epar	tment	of Bic	otechr	nology	7		
1	Student Outcomes	Α	b	с	d	e	f	g	h	i	j	k
			Х	Х					Х			
2	Mapping of instructional		2	3					1			
	objectives with student											
	outcomes											
3	Category	Ger	neral		Basi	с	Eng	g. Sci	. &	Pr	ofessi	onal
		(0	G)	Scienc		s (B)	Tech	n. Art	(E) (E)	Su	bjects	s (P)
											Х	
4	Broad Area	Bi	otechr	ology	7	Bio	oproce	ess		Chemical		
	(for courses under 'P'					Eng	gineer	ing		Engineering		
	only)						Х					
5	Approval		23	rd mee	ting o	of Acad	lemic	Coun	cil, M	ay 20	13	

3. Revised Syllabus for BT1059 BIOREMEDIATION TECHNOLOGY

		BIOREMEDIATION TECHNOLOGY	L	Т	Р	С							
рт	1059	Total No. of Contact Hours - 45	3	0	0	3							
DI	1059	Prerequisite											
		Nil											
PURPOSE													
The P	The PURPOSE of this course is to introduce the use of living organisms such as plants and												
micro	bes or th	eir systems to the treat contaminants. In addition, the course is	expe	cted t	o dev	elop							
an efficient, eco-friendly and economical novel alternative treatment technologies.													
an enterent, eeo-menary and economical novel alternative treatment technologies.													
	icient, e	co-mendiy and economical novel alternative treatment technolo	gies.										
		ONAL OBJECTIVES	gies.										
	RUCTI	-			tions	and							
INST	RUCTI To imp	ONAL OBJECTIVES			tions	and							
INST	RUCTI To imp global	ONAL OBJECTIVES art sufficient scientific understanding of the current environmen	ital tr	ibula									
INST 1.	RUCTI To imp global	ONAL OBJECTIVES art sufficient scientific understanding of the current environmen concern. Is the process of bioremediation, mechanisms, types, success sto	ital tr	ibula									
INST 1.	RUCTI To imp global To focu strategi	ONAL OBJECTIVES art sufficient scientific understanding of the current environmen concern. Is the process of bioremediation, mechanisms, types, success sto	tal tr	ibula & mo	nitori								
INST 1. 2.	RUCTI To imp global To focu strategi To focu	ONAL OBJECTIVES art sufficient scientific understanding of the current environmen concern. Is the process of bioremediation, mechanisms, types, success sto es.	tal tr	ibula & mo	nitori								

UNIT I BIOREMEDIATION

Introduction to Bioremediation: Types of Bioremediation, Factors affection Bioremediation .Bioremediation Mechanisms.Limitations of Bioremediations. Microbes for Bioremediation :Essential Characteristics of Microbes for Bioremediation, Microbial Adapadation for Adverse conditions. Microbes involved in Bioremediation. Metabolic process involved in bioremediation. Bioremediation Techniques : Insitu & Exsitu bioremediation techniques. Phytoremediation

UNIT II SPECIFIC BIOREMEDIATION TECHNOLOGIES

Application, specific advantages and disadvantages of specific bioremediation technologies land farming, prepared beds, biopiles, composting, bioventing, biosparging, pump and treat method, constructed wet lands, use of bioreactors for bioremediation.

UNIT III BIOREMEDIATION OF CHLORINATED COMPOUNDS AND MOLECULAR **TECHNIQUES IN BIOREMEDIATION** (9 Hours)

Bioremediation of phenols, chlorinated phenols, chlorinated aliphatic compounds, heterocyclic compounds, cyanides, dyes; Rhizoremediation: a beneficial plant-microbe interaction; Molecular techniques in bioremediation- Enhanced biodegradation through pathway engineering; Biodegradation of polyhalogenated compounds by genetically engineered bacteria.

UNIT IV NUCLEAR WASTE BIOREMEDIATION

Spent fuel characterisation, storage and disposal; Partitioning, transmutation and conditioning; Measurement of Radioactivity in the environment; Basic actinide research.

UNIT V. HEAVY METAL AND OIL SPILL BIOREMEDIATION (9 Hours)

(9 Hours)

(9 Hours)

(9 Hours)

Heavy metal pollution & sources; Microbial interactions with heavy metals - resistance &tolerance ;**Microbial transformation**; Accumulation and concentration of metals. Biosorption of heavy metals by microbial biomass and secondary metabolites – **Biosurfactants.** Advantages of biosurfactants over chemical surfactants.; Biotechnology and oil spills; Improved oil recovery.

REFERENCES

- 1. Bruce E. Rittmann, Perry L. McCarty, "Environmental Biotechnology: Principles and Applications" McGraw-Hill, 2001.
- 2. <u>Phillip L. Buckingham</u>, <u>Jeffrey C. Evans</u>," *Hazardous Waste Management*" Waveland Pr Inc; Reissue edition 1, 2010.
- 3. S. K. Agarwal, "Environmental Biotechnology", APH Publishing, 2000
- 4. Martin Alexander, "Biodegradation & Bioremediation", Academic press, 1999.
- 5. Karrely D., Chakrabarty K., Omen G.S, "*Biotechnology and Biodegradation*", Portfolio Pub. Co., 1990.
- 6. P. Rajendran, P. Guansekaran, "Microbial Bioremediation", Mjp Publishers, 2011.

	BT1059 BI	ORE	MEDI	ATI	ON 7	TECH	NO	LOGY					
	Course designed by]	Depai	rtment	of	Biotech	nolog	y			
1	Student Outcomes	а	b	С	d	e	1	f g	h	i	j	k	
			Х									Х	
2	Mapping of instructional objectives with student outcomes	1		4		2							
3	Category	-	General (G) Sciences (B) Tech. Ar (E) X				. Arts						
4	Broad Area (for courses under 'P' only)	Biotechnolog			gy .		-	ocess eering		-	Chemical Engineering		
5	Approval		23^{rc}	¹ me	eting	of Aca	den	nic Cour	ncil, M	lay 2	013		

4.. Revised Syllabus of BT1060 METAGENOMICS

BT1	060 METAGENOMICS	L	Т	Р	С					
	Total No. of Contact Hours – 45	3	0	0	3					
	Prerequisite									
	Nil									
PUR	POSE									
The p	purpose of this course is to provide focus on next generation DNA seq	uencin	g tech	nolo	gy to					
descr	ibe the ecological roles of microbial communities in different e	nviror	ment	s. It	also					
provi	des how the metabolic functions, taxonomic distribution, diversity,	evenne	ess ar	nd sp	ecies					
richn	ess of microbial communities varies across environment.									
INST	TRUCTIONAL OBJECTIVES									
1.	To use metagenomic data to describe the taxonomic make-up, fur	nctiona	l pot	ential	and					
	ecological processes of microbial communities from a range of envir	onmen	ts							
2.	To apply next generation sequencing technology.									
3.	To assemble and annotate genomes by identifying genes									

UNIT -1 ENVIRONMENTAL GENOMICS

Environmental Metagenomics – Introduction; Pure culture and in consortium ; Cultivable and Non-cultivable microbial analysis; Recombination DNA technology and DNA cloning; Types of vectors, applications of recombination DNA technology; Molecular fingerprinting techniques (RFLP, T-RFLP, ARISA, DGGE, rDNA library, and FISH); Stable isotope probing (SIP); Suppressive subtractive hybridization (SSH); Differential expression analysis (DEA); Microarrays & Metagenome sequencing; Next-generation sequencing approaches to metagenomics

UNIT II - STABLE ISOTOPE PROBING AND OLIGONUCLEOTIDE MICROARRAYS _(9 Hours)

Direct linking of microbial populations to specific biodegradation and biotransformation processes by stable isotope probing of biomarkers- PhyloChip & GeoChip-Detection of xenobiotic-degrading bacteria by using oligonucleotide microarrays

UNIT III LIBRARY CONSTRUCTION & ANALYSIS OF METAGENOMIC LIBRARIES (9 Hours)

Cataloging microbes: phylogenetic tree and construction - Construction of a metagenomic library; Analysis of Metagenomic Libraries; Sequence-based Metagenomics Analysis; Function-based Metagenomics Analysis; **Phylogenetic analysis** and Comparative genomics Softwares & Tools

Unit IV – METAGENOMICS CASE STUDIES

Metagenomic analysis of soil microbial communities; Metagenomic analysis of marine microbial communities; Metagenome of the Microbial Community in Acid Mine Drainage; Metagenomic Analysis of Bacteriophage; Metagenomics and Its Applications to the Study of

(9 Hours)

(9 Hours)

the Human Microbiome; Archaeal Metagenomics: Bioprospecting Novel Genes and Exploring New Concepts.

UNIT V- METAGENOMICS IN ENVIRONMENTAL STUDIES Hours)

(9

Application of Metagenomics to Bioremediation ; Applications of Metagenomics for Industrial Bioproducts; Escherichia coli host engineering for efficient metagenomic enzyme discovery; Next-generation sequencing approaches to metagenomics; Stable isotope probing: uses in metagenomics; DNA sequencing of uncultured microbes from single cells

REFERENCES

- 1. Diana Marco Universidad Nacional de Cordoba, Argentina, "*Metagenomics: Theory, Methods and Applications*", Caister Academic Press, 2010.
- 2. Diana Marco Universidad Nacional de Cordoba, Argentina "*Metagenomics: Current Innovations and Future Trends*", Caister Academic Press, 2011.
- 3. Joanna R. Freeland, Heather Kirk, Stephen Petersen, "*Molecular Ecology*", Mc Graw Hill, 2nd Edition "2012.
- 4. Beebee T.J.C., D G. Rowe," *An Introduction to Molecular Ecology*", Mc Graw Hill, 2004.

	Ι	BT106	0 MET	ГAG	ENOM	IICS						
	Course designed by			Ι)epartı	nent o	of Bio	techr	ology	7		
1	Student Outcomes	a	b	с	d	e	f	G	h	i	j	k
			Х									Х
2	Mapping of instructional objectives with student outcomes	1		4		2						
3	Category	G	eneral		Bas	sic	En	gg. S	ci. &	Pr	ofessi	onal
			(G)		Sciences(B)		Tech. Arts (ts (E)	Su	bjects	s (P)
											Х	
4	Broad Area (for courses	Biote	chnolo	ogy]	Biopro	cess		Chemical			
	under 'P' only)				E	Engine	ering		Engineering			g
		X										
5	Approval		23^{rd}	mee	ting of	Acade	emic	Cound	cil, M	ay 20	13	

5. Revised Syllabus of BT1029 PROTEIN ENGINEERING AND PROTEOMICS

		PROTEIN ENGINEERING AND PROTEOMICS	L	Τ	Р	С					
1	BT1029	Total No. of Contact Hours – 45	3	0	0	3					
	D I 1029	Prerequisite									
		Nil									
PUR	POSE										
The	course aims	at imparting knowledge on proteins through a detaile	d stu	idy c	of pro	otein					
struct	ture, its charac	cteristics property and significance in biological systems	with	n stra	tegie	s for					
modi	fying the stru	actures for desirable properties in industry. It briefs	about	the	diffe	erent					
analy	tical technique	es for elucidation of protein structure.									
INST	TRUCTIONA	L OBJECTIVES									
1.	To appreciat	e the structure function correlation and the prediction of p	rope	rties	of pro	otein					
	based on its	sequence.									
2.	To observe t	he similarities in structure at basal level in a group of havi	ng si	milar	func	tion,					
	thereby pred	icting the strategies to modify and design novel proteins.									
3.											
	protein interactions										

UNIT I – STRUCTURE FUNCTION DYNAMICS CORRELATION (9 Hours) Basic structural concepts - Primary, secondary, tertiary and quaternary structures. Ramachandran plot, super secondary structures - motif and domain. Protein folding and mechanisms.

UNIT II – STRUCTURE FUNCTION ENGINEERING

The correlation of structure and function in - transcription factors, serine proteinases, membrane proteins, signal transduction proteins and recognition in immune system.

UNIT III – PREDICTION AND DESIGN OF PROTEINS (10 Hours) Examples of designed proteins (enzymes) with enhanced stability and efficiency, playing a significant role in industries. A case study for - introduction of disulfide bonds (T4 lysozyme), reduction of free sulfhydryl groups, removal of metal requirements in certain proteins, streptokinase, introduction of complementary determining region in antibodies and to increase enzyme activity.

UNIT IV – PROTEIN STRUCTURE CHARACTERIZATION (8 Hours) Proteomes, - Protein digestion and separation techniques. Role of Mass spectrometry in protein identification - MALDI TOF - Tandem MS and SALSA - peptide mass fingerprinting.

UNIT V – PROTEOMICS APPLICATION

Mining proteomes, protein expression profiling, identifying protein – protein Interactions and protein complexes, mapping- protein identification, new directions in proteomics.

REFERENCES

1. Carl Brandon & John Tooze, "Introduction to Protein Structure," "2nd Edition" Garland Publishing, 1999

(10 Hours)

(8 Hours)

- Paul R. Carey, "Protein Engineering and Design," Academic Press, 1996.
 Daniel C. Liebler, "Introduction to Proteomics Tools for the New Biology," Humana Press, 2001

	BT1029 PROTE	IN E	NGIN	EER	RING A	ND P	'RO'	TEOM	IICS				
	Course designed by				Depart	ment	of B	iotech	nolog	<u>gy</u>			
1	Student Outcomes	a	b	c	d	e	f	g	h	i	i j		k
		Х	Х									Х	Х
2	Mapping of instructional objectives with student outcomes	1	2									3	3
3	Category	G	eneral (G)			usic ces (B)		Engg. Fech. A			Professional Subjects (P)		
												Х	
4	Broad Area (for courses under 'P' only)					-	Chemical Engineering						
	-	X									-		
5	Approval		23 ¹	rd me	eting of	f Acad	lemi	c Coun	icil, N	/lay	20	13	